基于神经网络的电子鼻肺癌早期诊断系统

迈肯思工控
发布时间:2019-11-27

    肺癌是目前全世界最常见的恶性肿瘤之一,其发病率和死亡率不断上升。究其原因是肺癌病因不明,发病时间短、转移快、恶性程度高,早期不易诊断,到中、晚期失去了手术机会,患者五年生存率仅为15%左右。早期发现可使患者五年内生存率提高到70%~80%。所以早期发现、早期诊断、早期治疗是提高肺癌生存率和降低死亡率的关键。肺癌早期通常无特殊症状,几乎不被医生和病人警觉,并且常用诊断方法难以做到早期发现、早期定性诊断。

  目前,基于电子鼻的疾病诊断研究主要集中在有关肾病、糖尿病的早期诊断和一些细菌的类型与生长阶段的识别。电子鼻的疾病诊断作为医学诊断无损化的重要方向之一,已经取得了很多成果,但目前还未有通过认证的呼吸诊断仪器的报道。如何进一步改进肺癌的诊断技术、提高各种治疗的疗效等,已经成为近期全世界肿瘤研究领域的重中之重。我国也把肺癌列为全国重点攻关课题。寻找一种更先进的仪器和技术在局部组织发生癌变时即能发现和诊断,即是本电子鼻系统所要完成的工作。本文从相关病理的呼吸气体的侦测和收集、气体传感器阵列的选取及优化设计和模式识别技术的选择等方面对电子鼻肺癌早期诊断系统进行了关键技术的设计,取得了良好的效果。

1 电子鼻肺癌早期诊断系统结构

  电子鼻是利用气体传感器阵列的响应图案来识别气体的电子系统。电子鼻主要由气体取样操作器、气体传感器阵列和信号处理系统三种功能器件组成。电子鼻识别气体的主要机理是在阵列中的每个传感器对被测气体都有不同的灵敏度,整个传感器阵列对不同气体的响应图案不同。正是这种区别,才使系统能根据传感器的响应图案识别气味。

  电子鼻典型的工作流程是:首先,利用呼吸气体收集装置(经过呼吸气体净化和流量控制)把呼吸气体吸取至装有电子传感器阵列的小容器室中;接着,把已初始化的传感器阵列暴露到被测气体中,当挥发性化合物(VOC)与传感器活性材料表面接触时,产生瞬时响应,这种响应被记录并传送到信号处理单元进行分析,与数据库中存储的大量VOC图案进行比较、鉴别,以确定气体类型;最后,清洗气冲洗传感器活性材料表面以去除测毕的气体混合物。在进入下一轮新的测量之前,传感器仍需再次初始化(即工作之前,每个传感器都需用干燥气或某些其他参考气体清洗,以达到基准状态)。电子鼻肺癌早期诊断系统结构如图1所示。

                        

全国服务电话:
0755-27151009
Copyright©2019 深圳市迈肯思科技有限公司
粤ICP备16030717号