基于LMS自适应噪声抵消法的无位置传感器研究
迈肯思科技
发布时间:2019-11-27
 

在无刷直流电机伺服控制系统中,无位置传感器的位置检测是关键。无位置传感器具有体积小、精度高、可靠性好、易于维护等优点,在伺服系统中得到广泛的应用。常用的转子位置检测法有反电动势法、磁链估计法、卡尔曼滤波等技术,比较成熟和常用的是反电动势检测技术。他是通过测量三相端电压,检测反电势过零点得到转子相位信号进行换相。但是在低速的情况下,由于噪声的干扰,反电动势的幅值相对于噪声信号小,不易检测出反电动势,从而引起电机失步。自适应噪声抵消法是以噪声干扰信号为处理对象,利用噪声信号和原始被测信号不相关的特点,自适应地调整滤波器的传递特性,将噪声干扰抑制或者非常大的衰减,提高信号传输中的信噪比。而自适应LMS滤波算法计算简单,易于实时信号处理,运用广泛。因此本文提出基于自适应噪声抵消技术的反电动势检测法,以中心点作为干扰信号,端电压作为带干扰信号的信号源,利用信号源和噪声干扰不相关的特性,提炼出反电动势而获得过零点进行位置检测。

1设计原理

1.1 自适应噪声基本原理

信号源被传送到信号传感器,会附加不相关的噪声n(k),合并的信号为y(k)=s(k)+n(k)进入抵消器。噪声传感器的输出x(k)经参数可调的数字滤波器后送入抵消器产生的输出信号x(k),根据两噪声信号相关和信号噪声独立的特性,利用自适应算法调节数字滤波器的参数,使得输出信号z(k)逼近信号源迭加的噪声n(k),这样抵消器的输出信号e(k)逼近被测信号s(k)。如图1所示。

                         
 
1.2 自适应滤波算法
自适应滤波采用的最优准则有最小均方误差准则、最小二乘准则、最大信噪比准则、最大似然准则、统计检测准则以及一些改进的最优准则。这里可以采用最小均方差误差准则。

LMS算法是用瞬时功率梯度代替均方误差梯度矢量的方法,即:

迭代算法步骤如下:
(1)初始化,选定初始权值ω(k)。
(2)计算k时刻滤波器的输出为z(k)=ωT(k)x(k)。
(3)抵消器误差输出e(n)e(k)=y(k)-z(k)。
(4)下一时刻权向量更新为w(k+1)=ω(k)+2μe(k)x(k)。
(5)k=k+1,跳转到步骤(2),重复迭代,直到算法收敛。

算法稳定性取决于两个因素,自适应步长参数μ和自相关矩阵R。算法收敛件是0

超级通云控

超级通微信云控

云控系统

云控

熊猫微信云控

微信云控系统

微信云控

微信云控系统

全国服务电话:
13066931819
Copyright©2019 深圳市迈肯思科技有限公司
粤ICP备16030717号