带增益调度的风力发电变桨距控制研究

迈肯思工控
发布时间:2019-11-28
O 引言
   
现代风力发电兴起于20世纪70年代,经过多年的发展,从最初的定桨距到现在的变桨距,从恒速恒频到如今的变速恒频,风力发电技术已较为成熟,基本实现了风力发电机组从能够向电网供电到理想地向电网供电的最终目标。
    近年来变桨距机组逐渐成为风力发电的主流机型,变桨距是指安装在轮毂上的叶片可以借助控制技术改变其桨距角的大小,从而改变叶片气动特性,使桨叶和整机的受力状况大为改善,并使风力机在高风速时可以输出更多功率且使输出功率更加平稳。桨距角的控制量可以是风速、机组输出功率或发电机转速,由于精确测量风速十分困难,本文选择一种由机组的输出功率来控制桨距角的控制策略,通过仿真验证了这种控制策略的可行性,然后引入一种带增益调度控制的控制策略,仿真证明这种控制策略可达到更好的控制效果。

l 变桨距控制原理
   
变速变桨距风力发电机组的控制主要通过两个阶段来实现:在额定风速以下时,保持最优桨距角不变,采用最大功率跟踪法(MPPT),通过变流器调节发电机电磁转矩使风轮转速跟随风速变化,使风能利用系数保持最大,风机一直运行在最大功率点;在额定风速以上时,通过变桨距系统改变桨距角来限制风轮获取能量,使风力发电机组保持在额定功率发电。而对于定桨距风力发电机组,当风速高于额定风速时,由于其桨距角不能改变,只能通过风机的失速特性来降低风能的吸收,因此在风速高于额定风速时不能维持额定功率输出,输出功率反而会下降。
    下面的公式是风速为V1时风轮捕获的风能P,其中P为空气密度,S为风轮扫掠面面积,CP为风能利用系数,它是叶尖速比λ和桨距角β的函数。


    由以上几个式子可以得到变桨距风力机的(CP一β)特性曲线,见图1。

    从图中可得出以下两点:
    (1)对于某一固定桨距角β,存在唯一的风能利用系数最大值Cpmax,对应一个最佳叶尖速比λopt;
    (2)对于任意的尖速比λ,桨距角β=0°下的风能利用系数CP相对最大。桨叶节距角增大,风能利用系数CP明显减小。
    以上两点即为变速恒频变桨距控制的理论依据:在风速低于额定风速时,桨叶节距角β=0°,通过变速恒频装置,风速变化时改变发电机转子转速,使风能利用系数恒定在Cpmax,捕获最大风能;在风速高于额定风速时,调节桨叶节距角从而减少发电机输出功率,使输出功率稳定在额定功率。

全国服务电话:
0755-27151009
Copyright©2019 深圳市迈肯思科技有限公司
粤ICP备16030717号