复杂背景下的车牌自动识别系统

  • 文章关键词:
  • 0 引言
        随着现代交通的发展,车牌自动识别技术越来越成为智能交通的重要组成部分。车牌识别技术主要是采用计算机图像处理技术对车牌的图像进行分析,以自动提取车牌信息,确定车牌号。一般说来,在车牌自动识别系统中,处理的关键技术问题是车牌的定位及字符的分割。对于车牌自动识别系统已经提出了许多方法,如运用多重特征的车牌定位算法,基于彩色和纹理分析的车牌定位方法,用神经网络算法进行车牌自动识别等。针对通过摄像头动态采集到的图像有可能存在模糊、噪声干扰等问题,我们先用改进模糊C-均值聚类算法对采集到的图像进行分割,然后根据车牌区域的特点对车牌进行定位。车牌定位后,根据车牌中字符的分布特点,对字符进行分割及识别。对于采集到的复杂背景的图像进行实验后,得到了较理想的车牌自动识别效果。


    1 车牌的定位
        车牌定位是车牌识别系统的核心,它是从一个复杂背景的图像找到车牌所在的区域。为了更好对车牌加以定位,需先对采集到的图像进行分割。
    1.1 用改进的模糊C-均值聚类算法进行图像分割
        模糊C-均值(FCM)算法是常用的图像分割方法,它是通过迭代法优化目标函数来实现图像分割的,该算法的不足是收敛速度较慢。为了提高该算法的速度,已提出了不同的改进FCM算法,在文献[5]中,利用分层聚类把图像数据分成一定数量的色彩相近的子集,来提高FCM算法的计算速度。该改进算法是通过减少聚类样本来提高聚类的速度的。
        在FCM算法中,初始聚类中心及聚类数目的选取对算法速度有一定的影响,较好的初始值,有助于提高聚类的速度。聚类中心与聚类数目与图像的灰度直方图的极值点相关联。对一幅较复杂的图像,其灰度直方图不是连续的图形,直方图中存在很多的毛刺,确定出的极值点一般有很多个。为了更有效地获取其极值点,我们对图像的灰度值做如下处理,将灰度值为[h,h+n]间的像素的个数叠加在一起,其中n为灰度区间,这可以避免一些像素值较小的极值点出现。通过处理后的图像灰度值col[i](其中0≤i≤255),来获得灰度直方图的极值点。当col[i-1]

      为提高聚类的收敛速度,还需对隶属度进行修正,在半抑制式模糊C-均值聚类算法(HSFCM)中引入了一抑制门限参数β,将最大隶属度值uRj与该门限进行比较,若其大于该门限,则对其进行修正;否则就不对其修正。为了更好地提高聚类的速度,将隶属度修正公式变为:

工控机箱_19寸工业机箱厂家_服务器机箱品牌制造商

产品中心
工业机箱

工控机箱
工控机箱
服务器机箱
服务器机箱
OEM/ODM定制流程
工控机箱定制流程
  • 定制咨询
    工控机箱定制咨询
    Step1
  • 需求分析
    工控机箱定制需求分析
    Step2
  • 可行性分析
    工控机箱定制可行性分析
    Step3
  • 确认规格
    工控机箱定制确认规格
    Step4
  • 报  价
    工控机箱定制报价
    Step5
  • 合同签订
    工控机箱定制合同签订
    Step6
  • 图纸确认
    工控机箱定制图纸确认
    Step7
  • 样品确认
    工控机箱定制样品确认
    Step8
  • 批量生产
    工控机箱定制批量生产
    Step9
迈肯思优势
工控机箱优势
迈肯思的八大优势MACASE'S EIGHT ADVANTAGES
迈肯思的八大优势
解决方案
机箱行业解决方案
机架式机箱行业解决方案 机架式机箱行业解决方案
服务器机箱行业解决方案 服务器机箱行业解决方案
工业机箱行业解决方案 工业机箱行业解决方案
工控机箱行业解决方案 工控机箱行业解决方案
工控机箱品牌厂商

MACASE用心打造每个细节
以全新的技术与的服务开创中国工控机箱领域新的篇章!
从这里开始,了解迈肯思的一切

服务器机箱品牌厂商
新闻资讯
4u机箱资讯
友情链接:
服务器机箱    |  工控机箱    |   2u机箱    |  4u机箱    |   机箱行业资讯    |   联系我们    |   网站地图    |           网站技术支持:云驰力