复杂背景下的车牌自动识别系统
迈肯思科技
发布时间:2019-11-29
  0 引言
    随着现代交通的发展,车牌自动识别技术越来越成为智能交通的重要组成部分。车牌识别技术主要是采用计算机图像处理技术对车牌的图像进行分析,以自动提取车牌信息,确定车牌号。一般说来,在车牌自动识别系统中,处理的关键技术问题是车牌的定位及字符的分割。对于车牌自动识别系统已经提出了许多方法,如运用多重特征的车牌定位算法,基于彩色和纹理分析的车牌定位方法,用神经网络算法进行车牌自动识别等。针对通过摄像头动态采集到的图像有可能存在模糊、噪声干扰等问题,我们先用改进模糊C-均值聚类算法对采集到的图像进行分割,然后根据车牌区域的特点对车牌进行定位。车牌定位后,根据车牌中字符的分布特点,对字符进行分割及识别。对于采集到的复杂背景的图像进行实验后,得到了较理想的车牌自动识别效果。


1 车牌的定位
    车牌定位是车牌识别系统的核心,它是从一个复杂背景的图像找到车牌所在的区域。为了更好对车牌加以定位,需先对采集到的图像进行分割。
1.1 用改进的模糊C-均值聚类算法进行图像分割
    模糊C-均值(FCM)算法是常用的图像分割方法,它是通过迭代法优化目标函数来实现图像分割的,该算法的不足是收敛速度较慢。为了提高该算法的速度,已提出了不同的改进FCM算法,在文献[5]中,利用分层聚类把图像数据分成一定数量的色彩相近的子集,来提高FCM算法的计算速度。该改进算法是通过减少聚类样本来提高聚类的速度的。
    在FCM算法中,初始聚类中心及聚类数目的选取对算法速度有一定的影响,较好的初始值,有助于提高聚类的速度。聚类中心与聚类数目与图像的灰度直方图的极值点相关联。对一幅较复杂的图像,其灰度直方图不是连续的图形,直方图中存在很多的毛刺,确定出的极值点一般有很多个。为了更有效地获取其极值点,我们对图像的灰度值做如下处理,将灰度值为[h,h+n]间的像素的个数叠加在一起,其中n为灰度区间,这可以避免一些像素值较小的极值点出现。通过处理后的图像灰度值col[i](其中0≤i≤255),来获得灰度直方图的极值点。当col[i-1]

  为提高聚类的收敛速度,还需对隶属度进行修正,在半抑制式模糊C-均值聚类算法(HSFCM)中引入了一抑制门限参数β,将最大隶属度值uRj与该门限进行比较,若其大于该门限,则对其进行修正;否则就不对其修正。为了更好地提高聚类的速度,将隶属度修正公式变为:

超级通云控

超级通微信云控

云控系统

云控

熊猫微信云控

微信云控系统

微信云控

微信云控系统

全国服务电话:
13066931819
Copyright©2019 深圳市迈肯思科技有限公司
粤ICP备16030717号